Almost six years have passed since we started offering GEPQ primarily through the Internet. Prior to 2004, subscribers received each issue via the US Postal Service starting in 1987. When I first began offering the quarterly over the Internet, my colleagues predicted a maximum of about 2,000 online subscribers. However, about 20,000 individuals, mostly teachers and parents, have requested online subscriptions. Here are my observations about current interests in the gifted field based upon interactions with subscribers. These observations can offer useful information about future directions, and are based upon requests for subscriptions from every state and Canada, Great Britain, Australia and New Zealand. This is not a statistically representative sample of people interested in gifted education.

What states have frequently asked for subscriptions? Certain geographic areas have shown consistent interest in GEPQ since the online edition was first made available in 2004 – South Carolina, Georgia, Florida and Texas. We received an initial boost from gifted coordinators in these states and also from their statewide associations, since these groups encouraged parents and teachers to request subscriptions. There is no indication that interest in the quarterly is waning in these states. After receiving many requests from teachers and parents in Illinois and Michigan, the numbers began to decline about three years ago, probably due to decreased state funding and gifted programming.

Other states such as Minnesota, Missouri, Ohio, Pennsylvania, Colorado, Arizona, Washington, California, Maryland and Virginia are the second tier of subscribers. Their response levels have been steady although not as large as the four previously mentioned states. States with the lowest responses have been Wyoming and New York. Previously, Massachusetts and West Virginia parents and teachers were among the lowest number of subscribers, but their interest has increased lately.

What do parents and teachers say when they request a subscription? Most teachers have little to add to their requests except for a polite “thank you.” Parents are more outspoken in expressing their concerns. Many of their statements indicate dissatisfaction with gifted programs. Some are extremely critical of the services provided, while others are thankful for these services. Overall, I detect a need for more information about educating gifted children both in the home and school. I should also indicate that many parents and teachers have been very complimentary about GEPQ articles and authors. What are some conclusions? I see increasing interest in gifted education, and believe this interest is mainly independent of current downward trends in funding and political attacks. Common sense reigns among educators and parents as shown by their unexpected positive responses to GEPQ and its excellent authors. These grass roots responses have the potential for igniting the field throughout the nation. What are we waiting for?

It is my privilege to present a research article on science education for gifted minority students by one of the mainstays of gifted education in the United States, Dorothy Sisk. (The study was part of a Javits Grant project.) She was one of the founding Directors of the US Office of Gifted and Talented, and now conducts research as the Conn Chair Professor of Education at Lamar University. The next two articles address the issue of effectively stimulating gifted children to develop lifetime reading habits. R.E. Myers, our in-house expert on creativity, discusses some effective methods for building creative reading skills, while Celia Webb (publisher of Pilinut Press, http://www.pilinutpress.com) addresses techniques that parents can use to establish a proper reading environment. I welcome back Alexis I. du Pont de Bie with his concise and pertinent critique. He was one of the founders of the World Council for Gifted and Talented Children and has been an active participant in the American Creativity Association. Michael Walters completes this issue with his creative suggestions for using Turner Classic Movies to expand the sensibilities of gifted children in literature and the arts.

Maurice D. Fisher, Ph.D. Publisher
Providing Access and Equity: Focusing on Underrepresented High Potential Students in Inquiry-Based Science

Dorothy Sisk

Lamar University Beaumont, Texas

One major ongoing problem in the education of gifted students is the disproportionate number identified as gifted from typically underrepresented groups compared to other groups. Part of the problem is the demographic divide that exists between teachers and students (Rosenberg, Westling & McLeskey, 2008). Students from diverse backgrounds make up 36% of the student population, but only 14% of teachers are from similar backgrounds. For teachers to be effective in identifying gifted students from diverse backgrounds, they need to hold a disposition that champions the idea of giftedness being found in all groups regardless of ethnicity, economic status, and or limited English proficiency. In addition, diverse students need role models who understand and reflect their culture.

As a teacher of gifted students, a gifted program specialist, and a teacher trainer in gifted education, I have noted that many students have never been thought of as gifted. However, when introduced to “hands-on” real-life activities, whether wading knee deep in mangrove swamps or marveling over the wonder of new life as baby chicks hatched in their class, these students begin to demonstrate behaviors that we think of as “gifted.” They ask questions, give creative responses, and persistently reach within for knowledge that had remained dormant. They amaze their teachers and their peers with their rich background of knowledge.

Project Scientists-in-Schools (SIS), a Jacob Javits program sponsored by the US Department of Education, was planned and implemented to use Science as a vehicle to introduce grades 8-12 high potential students to “hands-on” real-life activities, and opportunities to participate in a five year program. The schools selected for the project were all Title I schools, with the majority of the student population was from low income African American families.

Major Goals, Objectives, and Outcomes of the Scientists-in-Schools Project

A major goal of Project Scientists-in-Schools was to provide teachers with hands-on Science experiences to develop skills in using inquiry with their students; to increase achievement in Science; and to identify high potential students with unique capabilities for giftedness. At the conclusion of the five year project, it was hypothesized that 50% of the identified high potential students would be able to demonstrate high achievement in Science, and qualify for the gifted program in their local school district with A and B grades, teacher recommendation, and high achievement in Science as measured by standardized tests.

Method

Subjects/Participants

Thirty teachers from four low income middle schools were selected as teacher participants, and 60 8th grade middle school students were identified as having high potential in Science to form an experimental group. Sixty students of similar background and high potential in Science were identified as a control group. Each year, an additional group of 60 students were identified to participate in the program, for a total of 300 students for the five year project period, with the initial group participating and followed through graduation from high school.

Procedures

The experimental group of 60 students attended six Saturday seminars each project year at Lamar University (8:00 a.m. – 1:00 p.m.) in which they participated in two 1½ hour seminars side-by-side with their teachers. The seminars were taught by professors, who were selected for passion in their discipline and interest/willingness to work with young students. The seminars included Biology, Chemistry, Physics, and Earth and Space Science – all focused on hands-on and inquiry-based experiences. In addition, the professors provided seminars in the Science classes in the home schools of the high potential students to extend the ideas and procedures introduced in the Saturday Seminars.

Breakfast was served to the students in the Saturday seminars, partly because many came without breakfast, and also to use the “breakfast hour” for University professors, teachers, and students to socialize, and get to know one another. During breaks between the two seminars, the students gathered to “polish off” the rest of the breakfast, and to share their experiences as “practicing scientists” with one another. These opportunities for free interaction helped build the communication skills of the students and provided time for “bonding” between the professors, teachers, and students.

* Email: Dorothy.sisk@lamar.edu
Professional Teacher Development

Stronge (2007) studied the qualities of effective teachers, and concluded that the effective teaching of gifted students called for teachers to possess understanding of self and understanding of giftedness; to be a facilitator of learning rather than a director of learning; provide challenge rather than pressure; to be concerned with the process of learning as well as the product; provide feedback rather than judgment; and provide a classroom climate to promote self-esteem, creativity, and cognitive growth. Prior to the beginning of the SIS project, the thirty teachers attended a three week professional summer institute on how to differentiate the Science curriculum with inquiry-based learning. Each day, the teachers engaged in hands-on activities – building volcanoes, launching rockets, dissecting cow eyes, making crystals, and testing cereal for iron. The teachers became engaged and demonstrated the same enthusiasm and wonder that the students demonstrated in their classes in the fall, and in the Saturday seminars, as they engaged in inquiry and collaborative learning in Science. The teachers were asked to write in their journals (each day) opportunities for self-understanding, and reflections on their experiences in the labs. In small group and full group discussions, the teachers pondered in what ways they saw themselves changing as a teacher. Each day they were also asked to respond to thought-provoking statements such as:

Do we have the will to educate all children? Asa Hilliard (1991, p 31)

This question carries with it a veiled accusation – that we have not been educating all children and, indeed, maybe we do not have the will to do so.

Most of the teachers said they had little previous training in gifted education, and no real understanding of “gifted kids” and their characteristics and needs. Many said they thought very few low income minority students had the potential to be gifted, because they were underachievers and not motivated to learn. To help the teachers build an understanding of giftedness, a group of gifted students ranging in ages 6-14 were invited to the summer training session, and they shared what made school exciting for them, and conversely what they found troublesome.

We used a quotation from Lisa Delpit (1995) to introduce the discussion with the students:

Listening…requires not only open eyes and ears but open hearts and minds. We do not really see through our eyes or hear through our ears, but through our beliefs…It is not easy, but it is the only way to learn what it might feel like to be someone else, and the only way to start the dialogue. (p. 46)

After reading the quotation Ayesha (age 14) said, “It is about soft eyes, when someone listens to me from the heart, I see it in their eyes.” And Tom (age 12) said, “I can always tell if my teachers think I can do something, or not, and if they think I can’t, even though I used to think I could, I can’t.”

The students agreed they liked challenges, and “easy stuff” that they already knew was boring. They mentioned the importance of “choice” in school projects, and being able to select from a list of products, so that everyone isn’t doing the same thing. They said they liked teachers who “know a lot” about the subject they teach, but they liked teachers who still “wanted to learn.” Most of the students agreed that Science was their most favorite subject, especially labs, but they said their teachers didn’t always let them do the experiments…mostly we read about them. When asked what one thing they would like to change about school, they said “to be in classes where everyone wants to learn and to learn new stuff.”

When the students left, the teachers listed their comments on a chart: wanting to be safe; classes in which there is a caring feeling; being able to have tasks that are challenging, but doable; and choice in projects and products with lots of hands-on activities. This became the “mantra” for the three week teacher training session: How to structure Science to make it more student-friendly. The teacher training for project Scientists-in-Schools focused on five teacher skills: Coaching, Empowering, Focusing, Facilitating, and Transforming. These skills were quite successful in a previous Javits Program Grant, Project Step-Up: Systematic Training of Educational Personnel for Underserved Populations (Sisk, 1994).

Coaching is encouraging teachers to identify effective strategies and lessons they currently use. Project staff and administrators served as role models by coaching and demonstrating effective teaching to modify and influence teacher behavior. As coaches, the staff praised and supported the teachers by giving individual help with instruction, strategy options, and resources.

Empowering is developing strong, trusting relationships with the teachers. Discussions were held to develop a shared purpose and to clarify mutual values concerning the students. The teachers were provided opportunities to demonstrate inquiry activities from the SIS curriculum in their schools during in-service training at local and state meetings. As the teachers experienced empowerment, they were able to help their students be more successful by emphasizing a “can do” philosophy.

Facilitating is supporting the teachers with positive feedback, as they move from traditional teaching in Science to the use of inquiry. A Taxonomy of Teacher Change in Figure 1 (pp. 5-6) illustrates the progress of the teachers. Opportunities were provided by school administrators and the staff for the teachers to experience a free flow of information and ideas in formal and informal discussions. Facilitating the project teachers enabled them to create classroom environments among their students which enhanced self-perception and self-concept in both academic and social areas.
Transformation is providing opportunities for the teachers and SIS staff to remove and surmount a number of barriers to initiate educational change. Barriers included stereotypes of culturally diverse students and their parents such as, “The students are underachievers and not motivated,” and “Those parents aren’t interested in their children’s work.” Transformation included change in teacher and administrator perceptions of low income minority students as underachievers.

Inquiry as a social process
The teachers agreed that their high potential students enjoyed working in groups, working with hands-on activities, and the freedom to move around. These observations complemented the suggestions the U.S National Standards (2005) made for teaching Science:

- Investigating and analyzing Science questions,
- Focusing on process skills in content,
- Using multiple process skills – manipulation, cognitive, and procedural,
- Using evidence and strategies for developing or revising an explanation, viewing Science as argument and explanation,
- Communicating scientific explanations – analyzing and synthesizing data in groups,
- Investigating to develop understanding, and the value of inquiry and knowledge of Science content,
- Applying results of experiments to scientific arguments and explanation, and
- Communicating student ideas and work in public forums.

The 5E inquiry Model: A Constructivist Approach to Teaching Science
The 5E Inquiry Model of Engage, Explore, Explain, Elaborate, and Evaluate, a constructivist approach, was used throughout the professional development of the teachers. Engage: In the first stage the teacher introduces a new activity and the students draw from their prior experiences to make sense of the activity. It might be a question posed by the teacher, a demonstration or a video clip to capture the attention of the students to introduce the lesson. Explore: The second stage of the model involves the students with particular phenomena by manipulating materials to discover the phenomena. Instruction at this stage is inquiry-driven, and the teacher functions as a facilitator. Explain: In the third stage, the students communicate in verbal and written form about the information they derive from the learning experience. Communication can take place on many levels: learner reflection, peer-to-peer, student-to-teacher, and the use of media. Elaboration: In the fourth stage, students expand their knowledge by making connections about what they have learned and apply the new knowledge to real-world problems. Evaluation: This stage is integrated throughout the learning activities in Science, and is ongoing. Evaluation has a diagnostic function and maximizes the learning process.

An Exemplary Lesson Using the 5Es with Newton’s Law of Motion
Objective: To know Newton’s Law of Motion
Texas Education Knowledge and Skills (TEKS) Grades 8.1-8.2
Materials:
1 gallon zip lock bag for each group of 4 students
1 straw
1 piece of yarn 3 meters long
1 12 inch balloon
3 pieces of masking tape about 3 inches long

Engage: Students observe a “balloon rocket” move on yarn. Observations are made and recorded in an I Notice/I Wonder format, and this is followed by discussion of their observations in small groups.

Procedures:
1. Measure and cut a length of yarn 3 meters long.
2. Lay the straw at one edge (side) of the gallon zip lock bag and tape it securely. Be sure the end of the straw is close to the opening of the bag.
3. Place the yarn through the straw, so that the zip lock bag hangs from the yarn.
4. Assign two students to hold the ends of the yarn. Pull the zip lock bag down to one end.
5. Give each student in each group a balloon and demonstrate how to put the balloon inside the opening of the zip lock bag and blow it up.
6. Release the balloon and observe the flight of the rocket. Record and discuss observations in small groups.
7. All students need to observe what happens when the balloon is released. Make sure all students have a turn releasing the balloon.

Explore: In this activity, the students investigate the use of variables in relationship to the movement of the rocket balloon. They explore what happens by using different types of yarn, string or different sizes of balloons, and continue to write I Notice/I Wonder statements while changing variables and observing what happens.
Explain: The students share what they notice with the whole group and explain their thinking about what they have observed throughout the investigation. This is an opportunity to sort questions as investigable/non-investigable.

Elaborate: A variety of materials are presented to use to complete the challenge of: Can you build something that is powered by a balloon?

<table>
<thead>
<tr>
<th>Some materials that can be helpful:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Styrofoam</td>
</tr>
<tr>
<td>Paper tubes</td>
</tr>
<tr>
<td>Plastic tubes</td>
</tr>
<tr>
<td>Large pins</td>
</tr>
<tr>
<td>Water in large jugs</td>
</tr>
<tr>
<td>Coffee stirrers</td>
</tr>
<tr>
<td>Balloons of all sizes</td>
</tr>
<tr>
<td>Toothpicks</td>
</tr>
<tr>
<td>Clay</td>
</tr>
<tr>
<td>Masking tape and transparent tape</td>
</tr>
</tbody>
</table>

Evaluate: Ask students to share the major concepts they have learned, and ask them to relate this to Newton’s law.

Scientists-in-Schools Project: Student Results

The students were administered the Stanford Achievement Test in Science in both the experimental and the control groups. Science scores for the experimental group pre/post test indicated significant growth. In the 1st year the growth of the experimental group was one year and 5 months (1.5) and the growth of the control group was .06 months; year two, the experimental group improved 1.6 months and the control group 1.3 months; year three, the experimental group improved 1.5 months and the control group 1.1 months; during year four, the experimental group improved 2.2 months and the control group 1.7 months. Year five, the experimental group improved 2.0 months and the control group improved 2.0 months. However, it should be noted that the experimental group’s achievement improved from grade 8.0 to 10.0, and the control group’s achievement improved from grade 6.0 to grade 8.0, which placed the experimental group two grade levels higher in Science achievement. In addition, 168 of the experimental group of students achieved at the 95% level on the Stanford Achievement Test in Science. They were recommended for their district’s gifted program based on: 1) outstanding achievement scores, 2) grades of A-B in Science, and 3) teacher recommendations. The number of recommended students for the gifted program represented 56% of the SIS student participants, surpassing the original hypothesis of 50% being identified as gifted at the end of the five year project period (Sisk, 2008).

Taxonomy of Teacher Change

Figure 1 depicts the change in teacher behavior with the focus on the five teacher skills: Coaching, empowering, focusing, facilitating, and transforming. The teacher behavior is identified as well as the project support strategies:

Figure 1: TAXONOMY OF TEACHER CHANGE

(Project Scientists-in-Schools (SIS) teacher training results using the teacher skills of Coaching, Empowering, Focusing, Facilitating and Transforming.)

<table>
<thead>
<tr>
<th>Teacher Behavior</th>
<th>Project Support Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hesitant, reluctant, fearful of change. Traditional teaching style: Full group lecture and Q & A.</td>
<td>1. Provide role models to modify/influence teacher behavior. (Focusing/Facilitating)</td>
</tr>
<tr>
<td></td>
<td>2. Work with the principal and seek support for change. (Focusing/Facilitating)</td>
</tr>
<tr>
<td></td>
<td>3. Conduct on-site seminars focusing on questioning skills, learning centers, etc. (Focusing)</td>
</tr>
<tr>
<td></td>
<td>4. Provide instructional resources. (Focusing/Facilitating)</td>
</tr>
<tr>
<td></td>
<td>5. Identify effective strategies used by the teachers; praise their use and build on them. (Focusing/Facilitating)</td>
</tr>
<tr>
<td>Aware and sensitive to the needs of the minority economically disadvantaged children.</td>
<td>1. Provide further awareness training. (Focusing/Facilitating)</td>
</tr>
<tr>
<td></td>
<td>2. Provide curriculum materials and background research information on minority economically disadvantaged children. (Focusing/Facilitating)</td>
</tr>
<tr>
<td></td>
<td>3. Make site/classroom visits to help assess learning environment and clarify/suggest appropriate strategies. (Focusing/Facilitating)</td>
</tr>
<tr>
<td>Teacher Behavior</td>
<td>Project Support Strategies</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Seeks knowledge and information.</td>
<td>1. Encourage and implement networking/exchange between SIS classrooms. (Facilitating)</td>
</tr>
<tr>
<td></td>
<td>2. Invite teachers to visit other SIS sites within their district. (Empowering)</td>
</tr>
<tr>
<td></td>
<td>3. Establish computer/email link between sites. (Facilitating, Empowering)</td>
</tr>
<tr>
<td></td>
<td>4. Provide informal discussion groups; resources. (Focusing/Facilitating)</td>
</tr>
<tr>
<td></td>
<td>5. Encourage information sharing through network of fellow teachers. (Empowering)</td>
</tr>
<tr>
<td></td>
<td>6. Offer training on specific strategies such as higher level thinking skills and creativity development. (Focusing/Facilitating)</td>
</tr>
<tr>
<td>Seeks to accommodate and adapt curriculum to minority economically disadvantaged children’s needs.</td>
<td>1. Provide motivation through on-site seminars and attendance at state/national conferences. (Empowering)</td>
</tr>
<tr>
<td></td>
<td>2. Provide on-site or videotaped classroom demonstrations. (Empowering/Facilitating)</td>
</tr>
<tr>
<td></td>
<td>3. Ongoing process of building principal/teacher communication. (Empowering)</td>
</tr>
<tr>
<td></td>
<td>4. Provide newsletter for teachers. (Facilitating)</td>
</tr>
<tr>
<td></td>
<td>5. Provide process sharing in on-site seminars.(Empowering/Transformation)</td>
</tr>
<tr>
<td>Understands and is committed to meeting the needs of minority economically disadvantaged children.</td>
<td>1. Assist teachers in making appropriate adaptations in curriculum. (Facilitating/Focusing / Empowering).</td>
</tr>
<tr>
<td></td>
<td>2. Provide individual help with instructional strategy options and resources. (Facilitating)</td>
</tr>
<tr>
<td>Demonstrates strong commitment and uses teaching strategies.</td>
<td>1. Assist teachers with further enthusiasm and development through coaching. (Empowering)</td>
</tr>
<tr>
<td></td>
<td>2. Involve teacher to a greater degree in SIS network as resource demonstration teachers. (Facilitating, Empowering)</td>
</tr>
<tr>
<td></td>
<td>3. Offer opportunities for teachers to model innovative teaching. (Facilitating, Empowering)</td>
</tr>
<tr>
<td>Implements Scientists-in-Schools philosophy in the classroom.</td>
<td>1. Encourage more teacher/student interaction/initiative. (Empowering)</td>
</tr>
<tr>
<td></td>
<td>2. Continue to assist teachers in developing higher thinking processes. (Empowering)</td>
</tr>
<tr>
<td></td>
<td>3. Assist teachers in monitoring individual student progress and evaluation. (Focusing)</td>
</tr>
<tr>
<td>Shares innovative strategies and works outside the classroom to promote change for economically disadvantaged minority students.</td>
<td>1. Support teacher initiative with positive feedback. (Empowering, Transformation)</td>
</tr>
<tr>
<td></td>
<td>2. Involve teachers in district teacher in-service training as presenters. (Empowering)</td>
</tr>
<tr>
<td></td>
<td>3. Assist teachers in developing exemplary curriculum. (Empowering)</td>
</tr>
<tr>
<td></td>
<td>4. Assist teachers with classroom action research to document change. (Empowering)</td>
</tr>
</tbody>
</table>
Discussion

The strategy of collaboratively working with the teachers, their students, and University professors in Science proved to be both timely and successful. The students improved in their achievement in Science as measured by the Stanford Achievement Test in Science. All of the graduating participants enrolled in colleges and universities, and 52% of them chose Science as a major. The Scientists-in-Schools project demonstrated that teachers can build advanced Science content in hands-on experiences in collaboration with University scientists to help ensure that their high potential students develop a broad understanding of Science, and demonstrate their giftedness on standardized tests and grades to qualify for gifted programs. The project was able to close the achievement gap between underrepresented students and other students. SIS also demonstrated than an inquiry-based approach models how real scientists practice and work, and that meaningful Science activities can serve as powerful learning tools for high potential students and their teachers.

References

Facilitating Creative Reading for Gifted Students

R. E. Myers Healdsburg, California

E. Paul Torrance (1970) states that teachers can facilitate creative reading by heightening anticipation and expectation in their students and encouraging them to do something with what they read. He maintains that “doing something with what is read” can be conceptualized at four levels: reproducing literary materials imaginatively by oral reading, elaborating what is read, rearranging and transforming what is read, and going beyond what is read.

One way to read creatively is to respond to a poem such as haiku. If you are introducing haiku to a majority of your gifted students for the first time, you can have a brief discussion about the relationship of that verse form to the Japanese people and the structure of the three lines containing five, seven, and five syllables. An immediate response to reading these miniature poems often happens when presented to both younger and older students.

There is much to be gained by reading several classic haiku poems. A number of collections are readily available in books and can also be read in HaikuforPeople.com on the Internet. Have your students write impressions of the haiku they read in prose—using phrases, statements, questions, anything that comes to mind.

The next step is to have your students try their hands at writing several haiku. Almost every report I have learned about corroborates my experience that children of all ages can produce a great many haiku without undue prodding. In no case, however, should students be forced to share their attempts if they don’t wish to do so. At this stage the writing is just for fun. Later on, if any of your gifted students wish to, the poems can be collected and displayed in some manner. Some of them will ignore the prose they produced after initially being exposed to the classic haiku, and that’s all right. Here are two examples of a tenth-grader using the verse form after being encouraged to write about matters that were important to her:

Kabuki man
As the seasons change, beneath
the face, another.

His wicked hand that
Tore leaves off trees, turned away
As his white shame fell.
You may find that, after showing your gifted students several classic haiku, having them read the efforts of their classmates or other students will be quite stimulating to them. For instance, this poem by a tenth-grade boy might serve as a model for high school students:

The cold atmosphere
Freezes the regular thoughts
Of an early Iris.

Some may want to “take off” on the model and produce something similar in spirit. This haiku deals with the same subject, for example, but in a different manner:

The warm breath of spring
Uwinds the gorgeous turban
Of deep blue petals.

The second haiku provides a sequel to the first, but the poems produced can be based on any of the reactions or musings that come forth during the second stage when students write their impressions of the haiku that is presented. Generally, the restrictions placed upon keeping to the form and of producing an impression of a scene in nature will force them to reach for an original expression. Students shouldn’t worry too much about keeping to the exact 5-7-5 pattern. Naturalness and grace are much more important.

Another technique is to present a number of themes in haiku and then have gifted students work in pairs, collaborating on the three lines. The first round of writing can have them taking turns writing alternate lines of several haiku poems. During the second round, one can compose the first three lines and the other can contribute two more lines of seven syllables each, thus producing a tanka. Originally, haiku was a shortened form of the Japanese verse form tanka with a pattern of 5-7-5-7-7 syllables for the five lines. So by reversing the process, haiku can be expanded from three to five lines, producing a tanka.

If the writer of the haiku is true to the tradition of Japanese dwarf poetry, his or her poem may have some of the subtlety and elegance that is so charming in these verse forms. The first writer’s success, however, may pose a considerable challenge to the talents of his or her partner because the brevity of haiku tends to make it fragile. The thought expressed is but a glimpse of life; yet, like the old definition of a sentence, it is a complete thought. For example, the first haiku about the iris contains an interesting metaphor and is faithful to the spirit of haiku in selecting a moment of nature and illuminating it. It could be made into a tanka by adding two lines thusly:

The cold atmosphere
Freezes the regular thoughts
Of an early Iris.
In torpor, it dully dreams
Of a warmer tomorrow.

The collaborator can also enhance the original thought by making it deeper or fuller, as was done with this haiku:

A chilled lily floats
Below shifting horizons
Quavering at dawn.
Now prismatic rays of light
Radiate from a frog’s back.

The last two lines provide us with a mild surprise that serves to relieve the depression offered by the first three lines. In many cases, the second writer can give a twist to the first writer’s idea that will improve the poem considerably.

In a recent article in this journal (Spring 2009), I pointed out that doing something with what you read can lead to ideas that have happy consequences. A student teacher of mine once proved the truth of that statement by taking one of Mauree Applegate’s ideas and using it to evoke original expressions from 24 youngsters in grades 3-5 in a two-room rural school.

After reading Applegate’s classic Winged Writing (Row, Peterson, 1961), she decided to try out one of the author’s ideas on the students her supervising teacher had entrusted to her. She asked the children if they knew what a definition was. They didn’t. When she asked them what they used their dictionaries for, they couldn’t really tell her; but they finally decided that it had definitions for words in it. Then she told them that she was going to give them some definitions which they were never going to find in a dictionary, but which would still give them a clue to the word. For example, she said, what is a “dayshiner”? The youngsters decided it was the sun. They then worked together to make definitions for the word skunk. With the children, she talked about appearance, action, what a
skunk is and similes. Finally, they came up with three definitions for a skunk: an old perfume bottle, a walking pulp mill, and a black and white smellevision. The last one was everyone’s favorite.

She then listed words on the blackboard and told the children that they could define one, two, ten, or all of them or they could choose words of their own to define. She also said that it might be preferable to have one or two well-thought out definitions rather than a lot of definitions that didn’t mean very much. The students proceeded to work. Some went right ahead, some just sat, and a few indicated that they needed help. However, they all eventually came up with something. Toward the end of the writing time, when some showed signs of being finished, she suggested that they could draw a picture to go with their definitions or they could comment on the writing as an activity. She assured them that her feelings would not be hurt if they did not care for the work. Either they didn’t believe her or they really enjoyed the activity because there were no negative reactions.

At the end of about half an hour of writing some youngsters still felt they wanted more time, but the majority was finished. They were then anxious to share their writing. Most of them came to the front of the class and read their definitions while the rest of the children tried to guess what was being defined. When the supervising teacher returned, the children repeated their favorite definitions, and she had to do the guessing.

Some of the definitions which everyone seemed to enjoy were: A boy is a girl picker. (Age 8, Grade 3) A porcupine is like a moving sewing basket. (Age 9, Grade 4) A ram is like a grandpa who hasn’t shaved for weeks. (Age 9, Grade 4) A camel is a walking hill. (Age 9, Grade 4) A bumblebee is a honey picker. (Age 9, Grade 4) A moon is a sponge soaking up light in the daytime and it’s a sun in the nighttime. (Age 10, Grade 5) A bumblebee is a black and yellow flying power saw. (Age 10, Grade 5) The moon is like a giant banana in orbit. (Age 10, Grade 5) A mosquito looks like a flying saucer. (Age 10, Grade 5) A beaver is a brown pillow that cuts down trees. (Age 11, Grade 5).

Some of the comments written by the students about this activity were that they liked doing it because: It makes you think. I enjoy making up my own ideas. It’s fun. We can get away from old sayings and start using new ones. It’s fun to think up words like smellevision. It is different. A king (kind?) teacher is teaching it to us. It is so exciting. You can never get any wrong. It helps you to think in your head.

As you can see, humor was inherent in the responses of the youngsters, making the exercise enjoyable for them as well as for the student teacher. It is also interesting to note that the supervising teacher considered the class “rather slow.” (Two of the boys had just returned from a remedial class when the lesson was given.) Nonetheless, the students were obviously capable of genuine creative thinking.

We get our creative ideas in many ways, but certainly one of the major ways is in reading. The student teacher who used Mauree Applegate’s idea was simply expanding upon it when she administered the definitions lesson. She didn’t depart much from Applegate’s idea. Nevertheless, she was undoubtedly reading creatively and thinking of how this particular idea could be used with what would seem to be an unlikely group of young thinkers. She took an idea from a book and did something with it which brought out responses that surprised the students and her.

The newspaper should also provoke a good deal of creative reading. For instance, a fifth-grade boy read in his local newspaper that three persons had suffered from food poisoning in one of his city’s restaurants. He wanted to know if this happened often in the town and what regulations were given by the city to prevent salmonella food poisoning in public restaurants. His teacher then asked the class: “How much cleaner are the restaurants in town than the kitchens of your own homes?” The students accepted the challenge by going to the city hall to find out about the regulations regarding health and cleanliness for public eating places, drawing up a checklist of conditions necessary for a public hygienic kitchen, inspecting the kitchens of their homes, and giving the results of their findings in written and oral reports. As a consequence, the principal of the school received three telephone calls that were highly critical of the students’ investigations and two that were complimentary. (All of the negative comments came from parents.)

Conclusion

The three examples given above are only isolated instances of people, young and old, reading creatively. All of these examples can be effectively used to teach the gifted. In the case of reacting to haiku, the individual is indeed doing something with what is read. When the haiku is extended and becomes tanka, the "something" has a good chance of being original and rewarding. The second example illustrates what a sensitive and thoughtful teacher can make of an idea put forth in a book by a master teacher such as Mauree Applegate. The lesson she devised was unusually successful when one considers the children who produced the definitions. Finally, the young man who wondered why the restaurants in his town were shut down because of sanitary violations was doing the sort of reading that newspaper reporters and editors hope to stimulate with their stories and opinions. He asked questions, and as a result his teacher had his students looking for answers. That is the kind of reading that is critical in a democracy.
Parents can contribute greatly to the development of their gifted reader. Gifted readers are a subset of gifted learners who may have the ability to understand information at a higher level or from a different angle than a non-gifted learner. Many gifted readers show themselves long before starting kindergarten; some profoundly gifted three-year-olds seem to teach themselves to read. According to the National Research Center on the Gifted and Talented located at the University of Connecticut at Storrs, “As a group, talented readers are characterized by:

● reading earlier than their peers,
● spending more time reading,
● reading a greater variety of literature, even into adulthood (Collins & Kortner, 1995; Halsted, 1990),
● reading at least two grade levels above their chronological grade placement,
● demonstrating advanced understanding of language,
● having an expansive vocabulary,
● perceiving relationships between and among characters,
● grasping complex ideas (Catron & Wingenbach, 1986; Dooley, 1993; Levande, 1999),
● having skills which are advanced in relation to their peers,
● possibly not profiting from conventional instruction in reading (Levande, 1999),
● benefiting from diagnostically based instruction to ensure that their skills continually improve.”

Parents are the gifted child’s first teachers in a very concrete way. “Giftedness” seems to be a combination of native ability and enriched environment. They can provide a stimulating and enriching environment for their child from birth through high school graduation, and have the opportunity to expand their child’s learning through experiences not available through the school system.

There are many ways a parent can foster their gifted reader. Perhaps the most important thing a parent can do is keep the child and their own view of this talent in perspective. Each of us is a unique bundle of talents, gifts, and capabilities. It is the whole package that makes us who we are. Parents play a major role in helping children develop into an integrated whole. Concentrating solely on one talent or gift will result in lopsided growth and the result is not helpful to the child or those around him or her.

Fortunately, gifted readers can use their reading ability to their advantage to grow other portions of their personalities and talents, since reading can be used to unlock many fields of endeavor and thought. Parents can use the ideas in this article to enrich their child’s experiences with reading.

In the early years. The average spoken vocabulary at 24 months is 300 words and by 36 months the average spoken vocabulary is 1000 words. The receptive vocabulary (words understood but not spoken) is much larger than the spoken vocabulary (this is true throughout life but particularly apparent in the young). Profoundly gifted readers will have above average vocabularies at earlier ages than the norm and often, but not always, teach themselves to read. In fact, in 1972 the Marland Report from the US Office of Education stated half of gifted students had taught themselves to read before entering school. Enriched environments for young children can support the child’s propensity for quick language acquisition. In addition to reading to your child daily, make sure books of various levels are available in your household. Collect books for your child’s library and keep the books where your child can reach them. Talk with your child in a descriptive way as you go through your daily life. Your child will be distinguishing discrete words and sentence structure, learning new vocabulary, and equating books with happy times spent with you.

Library Resources. Make trips to the library a weekly habit in your household. Take your child to “Story Hour.” Get them a library card as soon as they are eligible. Encourage them to participate in the Summer Reading Programs. If your library sponsors Book Clubs for children or teens, encourage your child to join. Check with the Reference Librarian or Children’s Librarian for reading lists appropriate to your child’s reading level or interests. Remember that a child should read a variety of materials at different levels. Reading at or below their highest reading level reinforces and builds confidence in their skill. Reading above their current level is a good stretch, but can be discouraging, so smaller doses are appropriate.
Reading Night. While many parents understand the need to read to their young children, once they have learned to read, many families abandon the practice. Research shows however, that communal reading is beneficial into at least the teen years. Those of you who watch Turner Classic Movies may have seen the movie “I Remember Mama.” In the film a young woman writer recalls how her family gathered around the living room to hear the latest chapter in whatever novel the family was reading through at the time. This family made a practice of sharing great literature. Different family members read the material, questions could be asked and, if no one knew the answer, research could be done to find the answer. Since everyone in the family was involved, this activity not only strengthened the family unit, it gave a way to discuss important issues from the books in a supportive, safe environment. Institute a Reading Night with your family. Read a chapter a night from a sweeping saga which carries you away to a new and fascinating time and place. Rotate the reading through all the family members to give everyone a chance to practice this important skill. Answer questions about vocabulary and discuss situations, history as it applies, or issues as they appear in the story (Katz, 2000).

Read everything, everywhere. When you visit a park, zoo, or museum, have your child read the placards, look at the map and navigate you to the exhibits you wish to view, or read the signs for opening and closing hours. The point is to show the child that the opportunity to read and learn is all around us. When you go to the grocery store, have your child help you find the products you wish to purchase and evaluate nutrition information or pricing. Let them check items off the shopping list. The important part is their active participation in the activity and the application of reading skills in their every day existence (Webb, C. 2007).

Encourage hobbies. Parents of gifted readers can provide opportunities to their children the school system cannot. Encourage your child in a hobby, interest, or club. Music, dance, art, rocket building, theater, 4-H, Scouts, photography, horseback riding, model building are all examples of the types of activities a parent can support which will enrich and expand the child’s learning opportunities (and, by the way, exercise their reading skills in addition to the other skills they will be learning).

Play word games. Perhaps not surprisingly, most gifted readers also enjoy word games of all kinds. They are very likely to create puns, for instance. Play along. Introduce rhyming games, hangman, Scrabble, crosswords, anagrams, word searches, tongue-twisters, puns, and other word-teaser games to your gifted reader. Gifted readers love words and playing with words is the most fun of all. You will be happy to know that all this play develops strong vocabulary and spelling skills (Webb, 2006).

Expand understanding. Make it a point to discuss what a child has read and delve more deeply into the content. While a gifted reader may master the mechanics of reading easily, understanding, analyzing, and evaluating the material are more sophisticated skills. Make this a mutual discussion and not a quiz. Also, use this sparingly. Reading needs to be enjoyed to be a self-motivating activity. Concentrating on the analysis and evaluation of writing, calls for a different mindset than reading for enjoyment. Explore questions like:

For non-fiction: (1) Was the material factual? How can a reader tell? (2) What is an authoritative source for the purported factual information? Where can one find that information and verify it? (3) Does the author use logic or emotion to get across his point of view? What is the advantage or disadvantage of the approach the author took to the content? (4) Does the author describe principles and show how the details are related, or has the author presented many details without providing an underlying principle which connects these details? (5) What did the author mean when he wrote…? (6) Can you explain in your own words what the author meant when he wrote…? (7) If you had to explain this same concept to your younger brother, what would you say?

For fiction: (1) What happened in the story? (2) Who were the main characters and what were they like? (3) Why do you think the author chose to give these characters the attributes he did? How do those attributes contribute to the story? (4) What decisions did the main character make which might have changed the outcome of the story, if the decisions had been different? How might the story have changed? (5) What writing techniques did the author use to create interest in the story? (foreshadowing, flashbacks, cliffhangers, symbolism, irony, satire, similes, metaphors, etc). (6) Is there a life lesson, moral or message in the story?

Be a role model. Children emulate their main role model — their parents. Enjoy reading yourself. Set aside time each day when you read for your own enjoyment. Your child can read to themselves during this time or play quietly. You are setting the example that we continue to read throughout our lifetime for pleasure, to learn new skills, and for work. Reading is an important part of our life.

Concentration. Let your child read things that interest him without interruption. They need to develop concentration. Interrupting children when they are focused on a particular activity, even to give praise, can lead to lack of ability to concentrate. Allow them to focus their attention on a particular activity for as long as possible. Minimize your presence. Where there is interest, let that flourish.

Support the “whole” child. Parents are essential in providing guidance and balance in a child’s life. There is a distinct tendency in human beings to spend a lot of time on activities which they do well. This tendency can lead to an imbalance in a person’s life. It is important for all aspects of human character to be developed. Children need to develop physical, basic life, social, and emotional skills in addition to mental skills. Often persecuted by their age peers with labels like geek and nerd, gifted children need help building their self-confidence and defining their role as a member of society. Dewey G. Cornell, a clinical psychologist and professor at the University of Virginia, found children whose parents openly refer to them as gifted have less favorable self-images, are more prone to
anxiety, stress, and depression, are less well-liked by their peer groups, and have more behavior problems. Instead of focusing on the label of gifted, he suggests encouraging kids to be well-rounded, kind, helpful, and friendly in his article, Child Adjustment and Parent Use of the Term ‘Gifted’ in the Gifted Child Quarterly (33, 1989).

Additional Resources. If you are looking for more ideas on how to nurture your gifted reader, the National Research Center on the Gifted and Talented provides information and resources for teachers and parents through their website at: http://www.gifted.uconn.edu/SEMR/about/talented-readers.html.

You may also wish to check out the National Institute for Literacy at http://www.nifl.gov for their newsletter, series of publications for parents and educators about supporting acquisition of reading skills, and their report from the National Early Literacy Panel. While these publications are intended for readers on a normal progression path, those nurturing gifted readers can use the information at the level needed for their particular situation as the institute covers reading from early childhood through adulthood.

For more ideas on how to best guide your gifted reader and for specific book suggestions, get a copy of Some of My Best Friends are Books; Guiding Gifted Readers from Preschool to High School (2002) by Judith Wynn Halsted. The book explores the development of gifted readers. It has an annotated bibliography with suggested books for different age groups and issue areas. Gifted children often face similar challenges in developing their identity and learning to relate to others. The author provides specific suggestions for books which offer coping strategies and ideas a child could adopt.

Nurturing a gifted reader can be a great pleasure for both you and your child. New words can be discovered, secrets revealed, concepts understood, history exposed, and more in the comfort of an armchair while turning the pages of a book. Reading allows us to share the thoughts of the best minds humankind has produced. Facilitate your gifted reader’s journey into the written word with a daily infusion of ideas from this article.

References

By Celia Webb, President of Pilinut Press, Inc., publishers of advanced readers for children and ESL students http://www.pilinutpress.com/ © Celia Webb, 2009 Reprint Rights: You may reprint this article as long as you leave all links active, include the author byline, and do not edit the article.
Critique of the Current State of Gifted Education

Alexis I. du Pont de Bie, Ph.D. Center for the Analysis of Gifted Education

The publisher of *GEPQ* has asked me to distill my thoughts about the Fall 2009 issue. I do so with pleasure! Frankly, I am appalled by the horrific, stomach churning of our current local and national education for the gifted. It becomes truer every month.

In cooking, there is an expression that is appropriate here – making a “reduction,” i.e., to boil down ingredients to their essence. Unfortunately, our education system has boiled down the essence of gifted and creativity education to the point of mediocrity and virtual disappearance!

In Greek and Roman history, Pallas Athena and Minerva must be spinning in frustration concerning where this nation has plummeted to the current deteriorating levels in educating the gifted. From before President Ford’s administration, I was privileged to work with the finest academic mentors and to help the World Council for Gifted and Talented Children become a serious player in improving education for gifted children. I am also a lifetime member of the American Creativity Association.

In my own ancestry, the du Ponts were knighted for their integrity. The lack of moral rectitude in the present age does a violent disservice to the educational world. I propose that a resurrection of the Office of Gifted, Talented and Creativity occur within the United States Department of Education as soon as humanly possible. I will work with any politician and government official who accepts this view as vital and necessary to our country’s well-being.

The National Association for Gifted Children (NAGC) and others have tried to obstruct, because of politics, the mission of gifted education. Our collective educational groups must realize that for the nation and globally – elitism should not be an acceptable part of our vocabulary. Entrepreneurship is vital to the successes that we require, be they in the classroom or on the battlefield, and both are sometimes unalterably intertwined.

Turner Classic Movies and the Gifted

Michael E. Walters, Ed.D. Center for the Study of the Humanities in the Schools

The Turner Classic Movies (TCM.com) on cable television can be a great stimulus to gifted students’ sensibilities in both the cognitive and affective areas. The attributes of the gifted that these movies emphasize are synergy, multi-disciplinary thinking, and the unity of creativity and abstract thought. I will discuss three films that demonstrate these attributes of giftedness.

The first is *A Face in the Crowd* (1957). The synergy (different elements working together) in this film is the interaction between a great director, great writer, and great actors. Also, the music, which was Country and Western, played a big part in the film’s synergy. Elia Kazan (1909-2003), a Greek-American, was the director; he was also an outstanding director on the American stage. The screen play writer for *A Face in the Crowd* was Bud Schulberg who also wrote the screen play for *On the Waterfront*, several novels, and was a sportswriter and educator. The actors were Andy Griffith, Patricia Neal, Walter Matthau and Anthony Franciosa. The multi-disciplinary aspects were concerned with the interaction between the media and politics.

Among other classic films and plays that Kazan directed were: *Death of a Salesman* (1949), *A Streetcar Named Desire* (1951), *Viva Zapata!* (1952) and *On the Waterfront* (1954). Some great writers he worked with were Arthur Miller, Tennessee Williams, Bud Schulberg and John Steinbeck. The actors he directed are in the Pantheon of American performers, e.g., Lee J. Cobb, Marlon Brando, Eva Marie Saint, Carl Malden and Anthony Quinn. Leonard Bernstein was the composer who wrote a brilliant musical score for *On the Waterfront*.
The second film is *Mutiny on the Bounty* (1935) with Charles Laughton, Clark Gable and Franchot Tone. The screenplay was based upon novels by Charles Nordhoff and James Norman Hall, a trilogy consisting of *Mutiny on the Bounty* (1932), *Men Against the Sea* (1933) and *Pitcairn's Island* (1934). The multi-disciplinary aspects are the conflicts between Captain Bligh, an authoritarian personality, and Fletcher Christian, a Master’s Mate and humanitarian protector of his crew. Another multi-disciplinary attribute of the film is the use of anthropology and history to depict native cultures and historical characteristics of the British Navy in the late 1700s.

The third film is *The Hound of the Baskervilles* (1959) based upon a story by Sir Arthur Conan Doyle (author of *Sherlock Holmes* series) originally published in 1901. The actors were famous performers of the 1950s and 1960s horror movies, Christopher Lee and Peter Cushing. This film was made by Hammer Film Productions of Great Britain. Here, the multi-disciplinary aspects involved the British moors ruthlessly interacting with all of the characters.

The most outstanding contribution of Turner Classic Movies to educating gifted students is that it helps to combat cultural memory holes. TCM keeps active in the minds of future gifted students the famous twentieth century actors, writers, composers and directors. By looking back to and learning about these superb artists, the gifted sensibility will stand on the shoulders of intellectual and creative giants.